The generator matrix 1 0 0 0 1 1 1 X 1 a^2*X 1 1 1 1 1 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 X 1 X+1 1 a*X 1 a^2*X+a X+a^2 a^2 a*X+1 a^2*X+1 1 X+a a^2*X 1 a^2 a^2*X+a^2 X+a^2 X+1 a*X+a 0 a*X+a^2 X+a^2 X+1 a^2*X a^2*X+a^2 a X+1 a^2*X+1 a^2*X+1 a^2*X+a 0 0 1 0 a^2*X+1 1 a^2*X a^2*X+1 X+1 a^2*X+a a^2*X+a^2 X a^2*X+a^2 X+a a^2 a^2*X+a 0 a^2*X X+a^2 X+a^2 a*X+a a^2*X+a a X a*X+a^2 a^2*X+1 a*X X+1 X a*X+a^2 a a*X X+a 1 X+1 0 0 0 1 a^2 X a*X+a^2 a*X+a^2 a a^2*X X+a a^2*X+a^2 a^2*X+1 a*X+1 a*X+a^2 a^2*X+a X+1 a*X+1 a*X a*X+a^2 1 a^2*X a^2*X X+a^2 a^2*X+1 a^2*X a*X X+a a*X+a a*X+a a^2 1 a^2*X X+a^2 a^2 generates a code of length 35 over F4[X]/(X^2) who´s minimum homogenous weight is 92. Homogenous weight enumerator: w(x)=1x^0+357x^92+564x^93+552x^94+1116x^95+1983x^96+1608x^97+1764x^98+2088x^99+3522x^100+3036x^101+3312x^102+3792x^103+5277x^104+4248x^105+4008x^106+5064x^107+6303x^108+4020x^109+3336x^110+2964x^111+3138x^112+1728x^113+852x^114+336x^115+399x^116+156x^117+9x^120+3x^132 The gray image is a linear code over GF(4) with n=140, k=8 and d=92. This code was found by Heurico 1.16 in 7.72 seconds.